Paso 4: Análisis con física básica
Quería examinar el comportamiento de una trampa utilizando un modelo basado en física, para proporcionar una comparación contra el momento observado.Junté un análisis del sistema usando un modelo simplificado basado en la física de resortes ideal y movimiento armónico simple. En este análisis simplificado, muchas cosas han sido idealizadas. Las fuerzas de fricción, resistencia del aire y las fuerzas gravitacionales han sido descuidadas. La energía usada para empujar el gancho hacia arriba y fuera del camino no ha sido considerada. La primavera se asume para ser ideal, donde la constante de torsión del resorte no cambia con el ángulo.
El documento PDF adjunto contiene las ecuaciones que describen el modelo físico simplificado de la trampa de la rata. Muestra cómo se determinan las ecuaciones de movimiento, e incluye una hoja de cálculo de los parámetros del sistema y el rendimiento de la trampa de la rata. Todas las ecuaciones y conceptos contenidos en el análisis se aplican para la trampa de ratón y la trampa de la rata.
Yo sólo un par de los resultados más importantes de la trampa de la rata aquí la lista y salir a mirar el PDF para más detalles.
Lo principal que quería obtener del análisis era un valor calculado para la hora de cerrar, por comparación con el valor medido.
Resultados medidos y calculados para la trampa de la rata:
T_close_measured = 23ms
T_close_calculated = 14.5ms
Estos resultados concuerdan razonablemente bien con la observación. Es lógico que el valor calculado predecir un cierre más rápido, ya que no incluye ninguna fuerzas friccionales que reduzcan la velocidad.
La energía potencial almacenada en la trampa de la rata al conjunto se calculó en 3,16 julios. Que no parece muy mucha energía, pero es al parecer bastante romper una rata de cuello. No realizar los cálculos para la trampa de ratón, pero la constante de torsión del resorte sería mucho más baja que el de la trampa de rata, por lo que la energía necesaria para matar un ratón sería aún menos.